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D7.2: Recommendations on methods and datasets for 

calibration and combination of multi-model ensemble simulations 
 
Partner involved: INPE 
 
1. Introduction 
 
The production process of future climate simulations for climate change studies using climate models 
involves a considerable amount of uncertainties. These uncertainties arise, for example, from: a) 
assumptions about the future atmospheric constitution in terms of gases; b) our inability to precisely 
observe the present climate; and c) a number of assumptions that need to be made in climate models in 
order to simplistically represent the real climate.  
 
Recognising these sources of uncertainties, approaches have been developed for sampling some of these 
uncertainties in order to make estimates of future climate conditions. These approaches involve the 
generation of a number of climate simulations with a single climate model with different choices for 
various model parameters − the so called perturbed physics ensemble, or the generation of a number of 
climate simulations with different climate models in order to generate the so called multi-model 
ensemble of future climate conditions. In this procedure, a large number of future climate simulations is 
generated and used to estimate possible future ranges of values for a particular variable of interest (e.g. 
temperature). The motivation for the use of multi-model ensembles as a complement to single model 
perturbed physics ensembles lies on the fact that the use of different models potentially allows a more 
comprehensive quantification of uncertainty aspects involved in the future climate projection problem.  
 
This deliverable aims to review and recommend methods for dealing with large ensemble simulations in 
order to address uncertainties in future climate change simulations for producing combined and 
calibrated multi-model ensemble simulations for impact studies in the La Plata Basin (LPB). 
Recommendations on climate datasets for dealing with the future climate projection problem are also 
provided.  
 
 
2. Methods for calibration and combination of multi-model ensemble simulations 
 
Raisanen and Palmer (2001) can be considered the pionner study applying a probabilistic view of climate 
change projections on the basis of a multi-model ensemble composed by 17 ocean-atmosphere general 
circulation models participating in the Coupled Model Intercomparison Project phase 2 (CMIP2). Based 
on these models, probabilities of threshold events such as ‘the warming at the time of doubled CO2 will 
be greater than 18oC’ were computed as the fraction of models that simulated such an event, therefore 
assigning equal weight to each model when counting frequencies of exceedance. 
 
The next important step towards objective probabilistic projections was published in articles by Giorgi 
and Mearns (2002, 2003) introducing the reliability ensemble average (REA) approach. This approach 
assumes a different perspective when considering the contribution of each model to the final multi-model 
ensemble estimate. Two criteria are chosen for defining the contribution of each model: a) model 
performance in replicating current climate and b) inter-model agreement in the projections of future 
change. In other words, models with small bias and projections that agree with the ensemble ‘consensus’ 
are rewarded while models that perform poorly in replicating observed climate and that appear as outliers 
are penalised. The REA method proposes an estimation of model weights through which ‘bias’ and 
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‘convergence’ criteria are quantified. The weights for each contributing model i for the ensemble are 
defined as 

 
 
and the final weighted multi-model ensemble average is computed as 
 

 
where ΔTi is the projected change of each model. The weight Ri for an individual model is defined as the 
product of two terms (RB,i and RD,i), one inversely proportional to the absolute bias BT,i , and the other to 
the absolute distance DT,i between the model projected change and the final weighted ensemble average. 
At the numerator, εT is a measure of natural variability in 30-yr average temperature and precipitation, 
and ensures that models whose bias and deviation are not large relative to natural fluctuations are not 
unfairly penalised. For estimating εT, time series of observed temperature and precipitation for the 
twentieth century are selected. Next 30-yr moving averages of the series after linearly detrending the data 
(to remove century-scale trends) are computed and finally εT is estimated as the difference between the 
maximum and minimum values of these 30-yr moving averages. The exponents m and n are designed to 
modulate the relative importance of the two terms in the weighted average, but are set equal to 1. 
 
The REA studies by Giorgi and Mearns (2002, 2003) motivated the work by Tebaldi et al. (2004, 2005) 
and Smith et al. (2009). The latter authors proposed a Bayesian implementation of the REA approach 
making assumptions on the statistical distribution of model outputs and observations in order to 
determine the so-called likelihood distribution, which is then combined through Bayes theorem with the 
prior distributions to derive posterior distributions of uncertain quantities of interest (e.g. the climate 
change signal). Gaussian (normal) assumptions are made for the current (Xi) and future (Yi) model 
projections, centred around the mean climate signals, μ and ν, respectively, with model-specific 
variances: 

 
where the notation N(μ, λ‐1) stands for a Gaussian distribution with mean μ and variance 1/λ. Similarly, 
the observed current climate X0, is modelled as a Gaussian distribution centred around the same current 
climate signal μ, with variance estimated through the observed record 
 

 
The posterior (i.e. multi-model or combined) distribution for the climate signal is derived using Bayes 
theorem and numerical Markov Chain Monte Carlo methods, and translated into a probability 
distribution for climate change defined as ν–μ. The form of the posterior means for μ and ν is 
approximately 
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and 

 
 
 
where the model-specific λi resamble the REA weights, being estimated as 
 

 
The first term of the denominator in the equation above is a measure of bias, being the distance of the 
present climate average Xi simulated by model i from the optimal estimate of the current climate. The 
second term is a measure of convergence, computing a distance between the model’s future projection Yi 
from the future climate signal’s posterior mean. The terms a and b are parameters chosen as orders of 
magnitude smaller than the remaining terms to avoid significant impact on the final estimates. As in 
Giorgi and Mearns (2002), in this Bayesian implementation of the REA approach, models with large bias 
and too far from the multi-model ensemble receive less weight. Sharp criticisms have been raised against 
the validity of the convergence criterion when analysing a set of models that are by design ‘best guesses’ 
rather than attempting to sample a wide range of uncertainties, and whose agreement may be a 
consequence of inbreeding rather than reciprocal validation of individual tendencies. In particular, it has 
been often argued that there may exist common weaknesses in the representation of certain processes in a 
majority of models, and consequently outliers may not appear at random. In response to these concerns, 
the authors proposed a variant of the analysis in which the models considered as outliers are not heavily 
penalized (Tebaldi et al. 2004). This is achieved by a priori assigning a large probability to the models 
being less ‘precise’ in their future projections compared with their skill in current projections. This 
formally translates into a prior distribution for the parameter θ in the equation above that is concentrated 
on values less than 1. Another related consequence of assuming independence among GCM projections 
(which is implicitly or explicitly the case for all the methods described so far) is that any statistical 
analysis will produce increasingly more precise estimates (e.g. narrower posterior distributions of climate 
change signals) as the number of models in the ensemble increases.  
 
Another objective procedure was published by Greene et al. (2006), who have combined multi-model 
ensembles with a method commonly used in seasonal and interannual forecasting. In this method, a 
Bayesian hierarchical linear model is fitted to an observational dataset of regionally aggregated seasonal 
and annual temperatures, where the predictors are similarly aggregated GCM projections. The observed 
temperature (Yik) for region i and time k are modelled as centred around a mean value, with a Gaussian 
error, as 
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with the mean value modelled as a linear combination of GCM outputs 

where Xijk indicates the simulated temperature in region i at time k by model j. This procedure is similar 
to performing model calibration using retrospective forecasts and past observations. The calibrated 
ensemble is used to derive climate change projections, and given the random nature of the parameters in 
this hierarchical Bayesian model, the posterior distribution translates into a probability distribution for 
the climate change projection. The main assumption of this approach is that of stationarity of the 
relationship between observed and simulated climate, estimated in the training period of the twentieth 
century and applied to future simulations. This strong assumption causes obvious differences between the 
simple average projections from the GCMs and the projections synthesized from the calibrated ensemble, 
in many cases resulting in distributions over a range of values significantly shifted, more often towards 
lower values.  
 
Using a spatial Bayesian model Furrer et al. (2007) investigated GCM outputs at the grid point level, 
rather than at the aggregated level of large subcontinental regions as performed in all methods presented 
so far. The central idea of the approach in this spatial model is to model each GCM field of temperature 
or precipitation change as a random process on the sphere. The field is composed of two additive 
components: a large-scale climate signal and a small-scale error field, representing both model bias and 
internal variability. Thus, modelling the field of change, denoted as Di for the ith GCM, and defined as 
the difference, grid point by grid point, of the future mean projection minus the current mean projections 

 
Di = Yi − Xi 

 
the statistical model is given by 
 

Di = Mθi + εi. 
 
The large-scale signal, represented as the first additive term in the equation above, is modelled as a linear 
combination of a set of truncated basis functions, filling the columns of the matrix M. The basis 
functions are spherical harmonics, apt to represent spatial structure on a sphere, plus a set of additional 
vectors modelling the expected geographical patterns like, for example, a land/ocean mask. Observations 
are also used as one of the additional columns in the linear combination, in the hope that they will help 
explain some of the effect of the physical processes that create climate on Earth but are not easily 
represented through statistical modelling. In this study, there is no direct use of either a bias or 
convergence criterion in the spatial model. The coefficients of the linear combination are the components 
of the vector θi. The small-scale residual field εi is modelled as a realization of a stationary Gaussian 
random field of mean zero. Both the linear coefficients θi and the scale parameters of the covariance 
function in the Gaussian process εi are model-specific, to account for the different GCMs’ characteristics 
in replicating the true climate signal. The vectors θi of linear coefficients are samples from a distribution 
whose mean are the ‘true’ coefficients. The goal of the Bayesian analysis is to estimate the posterior 
distribution of the true coefficients. Once recombined with the basis functions, the posterior distribution 
for the true coefficients will translate into a multidimensional probability distribution of the large-scale 
signal of climate change, jointly quantifying the uncertainty over the global grid. This remains the only 
published method to represent the uncertainty over a global map, using spatial statistics to model 
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geographical patterns of varying degrees of smoothness (e.g. temperature change fields rather than 
precipitation change fields) as a function of the spatial correlation between locations. 
 
 
Figure 1 shows a comparision of probability density functions (pdfs) of temperature change produced by 
the methods in Tebaldi et al. (2004), Greene et al. (2006) and Furrer et al. (2007) using the 
Intergovernmental Panel on Climate Change (IPCC) fourth assessment (AR4) model experiments based 
on Special Report on Emissions Scenario (SRES) A1B scenario. The pdfs represent projections of 
temperature change in boreal winter (DJF, left panels) and summer (JJA, right panels) for the end of the 
twenty-first century. The figure also shows the empirical distributions of GCM projections (shaded 
histograms). Four out of the 22 regions introduced by Giorgi and Francisco (2000), which have become 
standard for regional climate change analysis in GCMs, have been selected: Western North America 
(WNA, first row), the Mediterranean basin (MED, second row), Northern Asia (NAS, third row) and 
Southeast Asia (SEA, fourth row). The empirical distribution represents the method by Raisanen and 
Palmer (2001) and Palmer and Raisanen (2002). The figures highlights that different methods produce 
different curves. The methods by Tebaldi et al. (2004) and Furrer et al. (2007) produce similar curves in 
terms of location of the central (most likely) estimate, and in most cases also present similar width. These 
two methods have narrower distributions than the empirical GCM distribution. The method by Greene et 
al. (2006) produces wider pdfs, probably becasuse of the large degree of uncertainty in the estimation of 
the calibration coefficients. This methos also tends to show for some regions shifted curves with respect 
to the empirical distribution. This effect is most likely due to the calibration coefficients being 
significantly different from those of a simple average of all available GCM projections. 
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Figure 1. Comparison of pdfs of temperature change under SRES A1B scenario produced with the methods of 
Tebaldi et al. (2004), Greene et al. (2006) and Furrer et al. (2007) for boreal winter (DJF, left panels) and summer 
(JJA, right panels) for four regions: Western North America (WNA, first row), the Mediterranean basin (MED, 
second row), Northern Asia (NAS, third row) and Southeast Asia (SEA, fourth row). A total of 20 IPCC AR4 
model projections is used to produce the pdfs. Grey histograms represent empirical GCM projected change 
distributions obtained with the method by Raisanen and Palmer (2001) and Palmer and Raisanen (2002). The 
temperature changes are computed as the difference between two 20-year averages, 2080–2099 versus 1980–1999. 
Source: Tebaldi and Knutti (2007). 
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3. Calibration and combination of temperature scenario simulations over LPB with 

linear and fuzzy regression 
 
In this section two methods are investigated for the calibration and combination of annual mean 
temperature scenario simulations over the La Plata Basin (LPB), which is illustrated in Figure 2a. The 
two investigated methods are: a) multiple linear regression (Greene et al., 2006), and b) fuzzy regression 
(Bisserier et al., 2010). First, cluster analysis was performed on 20th century temperature observations 
(Mitchell and Jones, 2005) to identify climatic homogeneous regions within LPB. Three main climatic 
homogeneous regions have been identified and are illustrated in Figure 2b, representing the meridional 
variation of temperature (warmer temperatures towards the north and colder temperatures towards the 
south). Next, temperature projections produced by five IPCC AR4 models under A1B scenario (see table 
1 for the list of models used in the investigation) have been extracted and averaged over each 
homogeneous region in order to produce a time series (i.e. an index) representative of the region. The 
observed temperatures of the 20th century have also been averaged over homogeneous regions. Then, the 
observed temperatures and the climate model temperature projections for the 20th century for each region 
have been used to build both the multiple linear regression and the fuzzy regression equations for the 
temperature indices of each homogeneous region, which have then been used for producing combined 
temperature projections for the 21st century for each homogeneous region in LPB.  
 
 
 

 

( a ) ( b ) 
Figure 2: a) Boundary of LPB (red line) in Southeastern South America. b) Three homogeneous regions in terms 
of annual mean temperature according to a k-means cluster analysis. 
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Table 1: Observations (first row) and IPCC AR4 models (remaining rows) used in the investigation.  

Acronym Instituiton Country 
Ensemble 

members 
Spatial resolution 

CRU1 University of East Anglia U.K - 0.5° x 0.5° 

GFDL2 US Dept. of Commerce / 

NOAA / Geophysical Fluid 

Dynamics Laboratory 

USA 4 2.5° x 1.5° 

GISS3 NASA / Goddard Institute for 

Space Studies 

USA 9 5° x  5° 

IPSL4 Institut Pierre Simon Laplace France 3 3.75° x 3.75° 

ECHAM55 Max Planck Institute for 

Meteorology 

Germany 8 1.875° x 1.875° 

HADCM36 Hadley Centre for Climate 

Prediction and Research / Met 

Office 

U.K. 3 3.75° x 3.75° 

1: Mitchell and Jones (2005), 2: Delworth et al., (2006), 3: Schmidt et al., (2005), 4: Hourdin et al., 
(2005), 5: Roeckner et al., (2003), 6: Johns et al., (2003). 
 
 
Figure 3 shows the observed annual mean temperature during the 20th century (solid red lines in panels a, 
c and e) and individual model projections (solid black lines in panels a, c and e) for the five IPCC AR4 
models for homogeneous regions 1, 2 and 3, respectively. The right panels of Figure 3 show combined 
and calibrated annual mean temperature projections for the 21st century with multiple linear regression 
(solid red lines in panels b, d and f) and individual model projections (solid black lines in panels b, d and 
f) for the five IPCC AR4 models for homogeneous regions 1, 2 and 3, respectively. Model projections for 
the end of the 21st century suggest an increase in temperature of the order of 1°C for the three 
homogenous regions.  
 
Figure 4 shows combined and calibrated annual mean temperature projections for the 20th and 21st 
centuries with multiple linear regression (solid thick line) and 90% confidence intervals (red band) for 
homogeneous regions 1, 2 and 3. The uncertainty in temperature projections for the 21st century is larger 
than for the 20th century for the three homogenous regions, as indicated by the larger confidence intervals 
of the 21st century when compared to the confidence intervals of the 20th century. 
 
Figure 5 shows combined and calibrated annual mean temperature projections for the 20th and 21st 
century with fuzzy regression. The blue band represents the 90% confidence interval and the green band 
the 40% confidence interval for homogeneous regions 1, 2 and 3. The cental grey line in panels a, c and e 
is the observed annual mean temperature during the 20th century, and the upper and lower grey lines are 
the observed 95th and 5th percentiles, respectively. The uncertainty in temperature projections for the 21st 
century is generaly larger when estimated with fuzzy regression compared to when estimated with 
multiple linear regression for the three homogenous regions, as indicated by the larger 90% confidence 
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intervals in Figure 5 when compared to Figure 4. In accordance with the results from multiple linear 
regression, fussy regression also suggests an increase in temperature of the order of 1°C for the end of 
the 21st century for the three homogenous regions. These results are also supported by Figure 6, which 
shows a comparison of decadal mean temperature projections for the 21st century with multivariate linear 
and fuzzy regression. 
 
 

Figure 3: Left panels, observed annual mean temperature during the 20th century (solid red line) and individual 
model projections (solid black lines) for the five IPCC AR4 models for homogeneous regions 1 (panel a), 2 (panel 
c) and 3 (panel e). Right panels, combined and calibrated annual mean temperature projection for the 21st century 
with multiple linear regression (solid red line) and individual model projections (solid black lines) for the five 
IPCC AR4 models for homogeneous regions 1 (panel b), 2 (panel d) and 3 (panel f). 
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(a) 

 
(b) 

 
(c) 

 
 (d) 

 
(e) 

 
(f) 

Figure 4: Left panels, combined and calibrated annual mean temperature projection for the 20th century with 
multiple linear regression (solid thick line) and 90% confidence interval (red band) for homogeneous regions 1 
(panel a), 2 (panel c) and 3 (panel e). Right panels, individual model projections for the 21st century for the five 
IPCC AR4 models (solid grey lines), combined and calibrated annual mean temperature projections for the 21st 
century with multiple linear regression (solid thick line) and 90% confidence interval (red band) for homogeneous 
regions 1 (panel b), 2 (panel d) and 3 (panel f). 
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(a) 

 
(b)

 
(c) 

 
 (d) 

 
(e) 

 
(f) 

Figure 5: Left panels, combined and calibrated annual mean temperature projection for the 20th century with fuzzy 
regression (90% confidence interval is given by the blue band and 40% confidence interval is given by the green 
band) for homogeneous regions 1 (panel a), 2 (panel c) and 3 (panel e). The central grey line is the observed 
annual mean temperature. The upper grey line is the observed 95th percentile. The lower grey line is the observed 
5th percentile. Right panels,  individual model projections for the 21st century for the five IPCC AR4 models (solid 
grey lines), combined and calibrated annual mean temperature projections for the 21st century with fuzzy (90% 
confidence interval is given by the blue band and 40% confidence interval is given by the green band) for 
homogeneous regions 1 (panel b), 2 (panel d) and 3 (panel f). 
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Figure 6: Observed decadal mean temperatures during the 20th century (solid thick line) for homogeneous region 
1(top panel), 2 (middle panel) and 3 (bottom panel). Combined and calibrated decadal mean temperature 
projection for the 21st century with multiple linear regression (dashed thick line). The red hashed band is the 21st 
century projection 90% confidence interval for multiple linear regression. The blue hashed band is the 21st century 
projection 90% confidence interval for fuzzy regression. The green band is the 21st century projection 40% 
confidence interval for fuzzy regression. 
 
4. Spatial calibration of El Niño-induced drought pattern in climate change projections 
 
Climate change models are capable of simulating El Niño precipitation variability during the 20th century 
and present robust precipitation projections for the 21st century (Coelho and Goddard 2009). Given the 
ability of climate change models to simulate El Niño precipitation variability during the 20th century and 
the robustness of the projected precipitation for the 21st century one can use spatial calibration techniques 
to produce improved projections of this variability, and thus better assess increasing or decreasing 
drought vulnerability, for the 21st century. To illustrate how climate change projections can be spatially 
calibrated the IPCC AR4 HADCM3 model is used. This is one of the models that best simulates El Niño-
induced spatial patterns during the autral summer (DJF) in the 20th century (see Table 2 of Coelho and 
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Goddard 2009). The illustration is performed using the first member of HADCM3 simulations for both 
20th and 21st centuries. 
 
For the spatial calibration a simple Bayesian approach known as forecast assimilation (Stephenson et al. 
2005) has been used. This approach is currently used in seasonal forecasting (Coelho et al. 2006). The 
calibration is performed when modeling a so-called likelihood function, where 20th century simulations 
are regressed on 20th century observations for obtaining a calibration equation. Because of spatial 
dependence of neighboring grid points and the large dimensionality of the datasets involved in the 
calibration procedure, the regression is performed on the leading mode of the canonical correlation 
analysis between the modeled and observed 20th century DJF precipitation anomalies, which has been 
found to represent ENSO variability. Additional and more detailed information about the calibration 
procedure is given in Stephenson et al. (2005) and Coelho et al. (2006).  
 
The illustration is performed in order to calibrate precipitation anomaly fields and produce a composite 
field (mean of a few El Niño events) representative of El Niño conditions. Prior to performing the 
canonical correlation analysis the following procedure is adopted to overcome the lack of temporal 
consistency of the climate change models in simulating the observed ENSO variability. First, both 
modeled and observed 20th century Niño-3.4 indices have been sorted in ascending order. Next, both 
modeled and observed 20th century precipitation have been paired according to the sorted Niño-3.4 index. 
Finally, the paired precipitation has been put in chronological order according to the observations. Figure 
7 shows the leading mode of the canonical correlation analysis between modeled and observed 20th 
century precipitation, which represents ENSO variability. Figure 7a shows the time series (expansion 
coefficients) of modeled (solid line) and observed (dashed line) precipitation. The two time series are 
highly correlated (correlation coefficient of 0.92) indicating that HADCM3 has a good representation of 
ENSO variability. Large positive values indicate El Niño years. Large negative values indicate La Niña 
years. Figures 7b-c show modeled and observed spatial precipitation patterns, respectively. The spatial 
pattern of Fig. 7b is given by the correlation of the observed time series (i.e. dashed line in Fig. 7a) and 
the modeled precipitation time series at each grid point. The spatial pattern of Fig. 7c is given by the 
correlation of the modeled time series (i.e. solid line in Fig. 7a) and the observed precipitation time series 
at each grid point.  
 
Figure 7b shows that HADCM3 has a good response to ENSO in the equatorial Pacific and simulates 
positive precipitation anomalies over the region of positive sea surface temperature anomalies during El 
Niño years, as indicated by the positive correlation in the equatorial Pacific. The comparison of Figs. 7b 
and 7c also reveals that the model is able to simulate the observed negative precipitation anomalies over 
northern South America. Over southern Africa, the model produces weaker precipitation anomalies than 
observed. Over part of Indonesia, the model simulates the opposite precipitation signal to the observed. 
The patterns of Figs. 7b and 7c are  similar to the canonical correlation analysis loading patterns used in 
the calibration procedure to project the 21st century model simulated patterns for each El Niño towards 
the observed pattern. For the 20th century simulations the calibration procedure for each year is 
performed using a cross-validation (leave one year out) procedure. After calibration is performed for 
each year in the 20th and 21st century, El Niño composites are produced for the calibrated precipitation 
anomalies. 
 
Figures 8a shows the raw (i.e. uncalibrated) and Fig. 8b shows the calibrated HADCM3 El Niño 
precipitation anomaly composites for the 21st century. The calibrated composite (Fig. 8b) is in much 
better agreement with the observed composite (Fig. 9) than the raw composite (Fig. 8a). The calibration 
resulted in important regional changes in drought risk. For example, both northeast South America and 
northeast Australia appear as drought prone regions in the raw composite (Fig. 8a), while in the 
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calibrated composite (Fig. 8b) this drought feature is mostly replaced by normal conditions. Some 
regions in southern Africa appear as less prone to droughts in the raw composite (Fig. 8a), while in the 
calibrated composite (Fig. 8b) these regions now appear as more drought prone. Over Eastern Indonesia 
in the raw composite drought risk appears reduced during DJF El Niño conditions (Fig. 8a), while in the 
calibrated composite (Fig. 8b) this region now appeard as more at risk of drought during El Niño. 
 
 

Figure 7: Leading canonical correlation analysis mode between DJF HADCM3 simulations and observed 
precipitation anomalies in the 20th century. a) time series (expansion coefficient). b) HADCM3 pattern. c) 
observed pattern. See text for additional explanation. 
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Figure 8: HADCM3 El Niño precipitation anomaly composites. a) Raw composite for the 21st century. b) 
Calibrated composite for the 21st century. Precipitation anomalies are expressed in mm.day-1. 
 
 

Figure 9: Observed DJF precipitation anomaly El Niño composite. The composite is given by the mean of the 
observed DJF standardized precipitation anomalies for the eleven years (1963/64, 1965/66, 1968/69, 1972/73, 
1977/78, 1982/83, 1986/87, 1987/88, 1991/92, 1994/95 and 1997/98) classified as El Niño years. El Niño 
classification is determined by the Niño-3.4 index (SST anomaly in the equatorial Pacific region between 5oN, 5oS, 
120oW,170oW) falling in the upper quartile of the observed distribution. 
 
 
 
5. Datasets for calibration and combination of multi-model ensemble simulations 



 
 

CLARIS LPB 
A Europe-South America Network for Climate Change Assessment 

and Impact studies in La Plata Basin 
www.claris-eu.org 

Deliverables 
 

Work Package: 7 
Deliverable D7.2 

Page 17 of 21 

 

 
Several observational datasets are currently available for climate research and are appropriate to be used 
for the calibration and combination of multi-model ensemble simulations. Below is a list of the most 
commonly used datasets: 
 
• The Climate Reseach Unit-University of East Anglia (CRU-UEA TS2.1) dataset (Mitchell and Jones, 

2005) contains daily mean, minimum and maximum temperature, diurnal temperature range, 
precipitation, wet day frequency, frost day frequency, vapour pressure and cloud cover at a spatial 
global resolution of 0.5° x 0.5° degrees in latitude and longitude for the period 1901-2002. This 
dataset and the correpondent documentation is available at 
http://www.cru.uea.ac.uk/cru/data/hrg/timm/grid/CRU_TS_2_1.html 

 
• The Global Precipitation Climatology Project (GPCP V2.1) dataset (Adler et al., 2003) contains 

monthly combined satellite-gauge global precipitation estimates at a spatial resolution of 2.5° x 2.5° 
degrees in latitude and longitude for the period 1979-present. Additional information is provided at  
ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.1/doc/V2.1_doc.pdf 
and the dataset is available at ftp://precip.gsfc.nasa.gov/pub/gpcp-v2.1/ 
 

• The Hadley Centre Climatic Research Unit Temperature version 2 (HadCRUT2v) dataset (Jones and 
Moberg 2003; Rayner et al. 2003) contains combined land and marine gridded monthly surface 
temperature at a spatial resolution of 5° x 5° degrees in latitude and longitude for the period 1870-
2005. This dataset is available online at http://www.cru.uea.ac.uk/cru/data/tem2/. This is one of the 
best datasets with long time coverage (136 yr) available for climate research. 

 
• The National Centers for Environmental Predictions/National Center for Atmospheric Research 

(NCEP/NCAR) Reanalysis (Kalnay et al., 1996; Kanamitsu et al., 2002) dataset contains global daily 
and monthly analysis of a comprehensive list of climate variables at a spatial resolution of 2.5° x 2.5° 
degrees in latitude and longitude for the period 1948-present. This dataset and correspondent 
documentation is available at http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml 

 
• The European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA-

40) dataset (Uppala et al., 2005) contains global daily and monthly analysis of a comprehensive list 
of climate variables at a spatial resolution of 2.5° x 2.5° degrees in latitude and longitude for the 
period 1957-2002. This dataset and correspondent documentation is available at  
http://data-portal.ecmwf.int/data/d/era40_moda/  
http://data-portal.ecmwf.int/data/d/era40_daily/ 
http://www.ecmwf.int/research/era/do/get/era-40 

 
• The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-

Interim) dataset contains global daily and monthly analysis of a comprehensive list of climate 
variables at a spatial resolution of 1.5° x 1.5° degrees in latitude and longitude for the period 1989-
present. This dataset and correspondent documentation is available at  
http://data-portal.ecmwf.int/data/d/interim_moda/ 
http://data-portal.ecmwf.int/data/d/interim_daily/ 
http://www.ecmwf.int/research/era/do/get/era-interim 
 

• The National Centers for Environmental Predictions/Climate Forecast System (NCEP/CFS) 
Reanalysis (Saha et al., 2010) is the first reanalysis dataset produced with a coupled atmosphere-
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ocean-land surface-sea ice system and contains global daily and monthly analysis of a comprehensive 
list of climate variables at a spatial resolution of 0.5° x 0.5° degree in latitude and longitude for the 
period 1979-2010. This dataset and correspondent documentation is available at 
http://cfs.ncep.noaa.gov/cfsr/ 

 
• The Japanese 25-year Reanalysis (JRA-25) dataset (Onogi et al., 2007) produced by the Japan 

Meteorological Agency (JMA) and the Central Research Institute of Electric Power Industry 
(CRIEPI) contains global daily and monthly analysis of a comprehensive list of climate variables at a 
spatial resolution of 1° x 1° degree in latitude and longitude for the period 1979-2004. This dataset 
and correspondent documentation is available at http://jra.kishou.go.jp/JRA-25/index_en.html 

 
 
6. Recommendations 
 
Considerable research has been devoted to methods for combining and calibrating multi-model ensemble 
climate simulations (e.g., Giorgi and Mearns 2002, 2003; Tebaldi et al. 2004, 2005; Greene et al. 2006; 
Furrer et al. 2007; Smith et al. 2009). This deliverable reviewed these methods and explored the 
application of regression based methods (Greene et al. 2006; Bisserier et al., 2010) for producing 
combined and calibrated annual mean temperature projections for LPB. The deliverable also illustrated 
how climate change projections can be spatially calibrated. For the spatial calibration a simple Bayesian 
approach known as forecast assimilation (Stephenson et al. 2005) was used. This approach is currently 
used in seasonal forecasting (Coelho et al. 2006). The following recommendations are provided: 
 
• As illustrated in Figure 1, different methods produce different projected climate change distributions. 

In order to increase understanding and confidence on currently available methods it is recommended 
the comparison of the empirical distribution as obtained in Raisanen and Palmer (2001) and Palmer 
and Raisanen (2002) with the distribution of each method described in section 2. 

• Given the lack of robustness among currently available methods as evident by the significant 
disagreement among the distributions produced by the different methods, and the open questions and 
issues associated with the interpretation of multi-model ensembles for climate projections, the results 
of these multi-model ensemble analyses should be considered experimental, altough all developed 
methods have enough theoretical and statistical basis to justify their use. 

• Simple regression approaches for the calibration and combination of multi-model ensemble climate 
simulations are atractive because of their straightforward implementation. However, these approaches 
assume stationarity of the relationship between observed and simulated climate, estimated in the 
training period of the twentieth century and applied to future simulations. This is a strong assumption 
that should be kept in mind when interpreting future climate projections obtained with these 
approaches.  

 
In terms of datasets for the calibration and combination of multi-model ensemble climate simulations, in 
addition to the datasets listed in section 5, the following datsets are recommeded:  
 
• CLARIS LPB data server (http://eolo.cima.fcen.uba.ar/DS/menu.html), developed by WP7, contains 

the archive of IPCC AR4 climate model simulations and will also have the arquive of regional 
climate model simulations over LPB produced by WP5. 

• CLARIS LPB station dataset, compiled by WP3, containing daily maximun and minimun 
temperature and precipitation over LPB, which is available from http://wp32.at.fcen.uba.ar/ 
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• CLARIS LPB gridded dataset, produced by WP3 using the station dataset above, which will be made 
available at the CLARIS LPB data server at http://eolo.cima.fcen.uba.ar/DS/menu.html 

• The Climate explorer (http://climexp.knmi.nl/) contains a comprehensive list of datasets available on-
line for climate analysis. 

• The IRI data library (http://iridl.ldeo.columbia.edu/) contains a comprehensive list of datasets 
available on-line for climate analysis. 
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